The Abelian Sandpile and Related Models
نویسنده
چکیده
The Abelian sandpile model is the simplest analytically tractable model of self-organized criticality. This paper presents a brief review of known results about the model. The abelian group structure of the algebra of operators allows an exact calculation of many of its properties. In particular, when there is a preferred direction, one can calculate all the critical exponents characterizing the distribution of avalanche-sizes in all dimensions. For the undirected case, the model is related to q → 0 state Potts model. This enables exact calculation of some exponents in two dimensions, and there are some conjectures about others. We also discuss a generalization of the model to a network of communicating reactive processors. This includes sandpile models with stochastic toppling rules as a special case. We also consider a non-abelian stochastic variant, which lies in a different universality class, related to directed percolation.
منابع مشابه
Two-component Abelian sandpile models.
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models wi...
متن کاملAbelian Sandpile Model: a Conformal Field Theory Point of View
In this paper we derive the scaling fields in c = −2 conformal field theory associated with weakly allowed clusters in abelian sandpile model and show a direct relation between the two models.
متن کاملSpatial Asymmetric Two dimensional Continuous Abelian Sandpile Model
We insert some asymmetries in the continuous Abelian sandpile models, such as directedness and ellipticity. We analyze probability distribution of different heights and also find the field theory corresponding to the models. Also we find the fields associated with some height variables. PACS : 05.65+b, 89.75.Da
متن کاملUniversality Classes in Isotropic, Abelian and non-Abelian, Sandpile Models
Universality in isotropic, abelian and non-abelian, sandpile models is examined using extensive numerical simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric features of the avalanches, as well as scaling functions describing the time evolution of average quantities such as the area and size during the avalanche. Comparing between the ab...
متن کاملAsymmetric Abelian Sandpile Models
In the Abelian sandpile models introduced by Dhar, long-time behavior is determined by an invariant measure supported uniformly on a set of implicitly defined recurrent configurations of the system. Dhar proposed a simple procedure, the burning algorithm, as a possible test of whether a configuration is recurrent, and later with Majumdar verified the correctness of this test when the toppling r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999